Как устроена система кондиционирования воздуха в самолетах

Устройство кондиционера в самолетах

Кондиционер в самолете необходим, чтобы каждый пассажир мог обезопасить себя от случайного инфицирования. При перелетах рядом могут сидеть люди с различными заболеваниями. Поэтому создана специальная система кондиционирования.

Кондиционер устроен индивидуально и не похожа на другие, которые привычно видеть в домашних условиях

Как устроена самолетная система вентиляции

Индивидуальные кондиционеры, которые есть над каждым пассажирским креслом, используют не тот воздух, которым дышат на земле. Он отбирается из рабочих двигателей. Первоначально он имеет температуру 500 градусов Цельсия.

Прежде чем этот состав попадет в кабину аэробуса, он проходит множественные ступени охлаждения. Поэтому на борту всегда прохладно, а влажность снижена. После забора из мотора, воздух делят на два потока: первый охлаждается и поступает в смеситель, а второй проходит через прямую линию кондиционера.

Следом происходит смешивание пришедших потоков, которые потом, как единое целое, поступают в гермокабину. Часть горячего двигательного воздуха проходит слабую обработку. В дальнейшем она направляется на обогрев внешней части кузова самолета. Это исключает обледенение крыльев и других частей лайнера.

Наледь на хвосте, концах крыльев по статистике самая частая причина авиакатастроф с летальным исходом.

Подогретый слегка воздух циркулирует в специальной системе, это небольшие патрубки, расположенные под обшивкой самолета.

Функции кондиционера в самолете

Кондиционер на борту самолета выполняет много полезных задач. Обеспечивает безопасность для организма человека. Если кто-то из пассажиров чихнул, микробы начинают быстро циркулировать в воздухе и попадают на слизистые оболочки. Чтобы этого не произошло, нужно во время полета запускать соответствующий тумблер над своим креслом.

Пример того, как выглядит кондиционер в самолете

Изучив особенности работы кондиционера в самолете, отмечают его следующие функции:

  • безопасность для дыхания;
  • предотвращение повышения артериального давления;
  • предупреждение проблем с кожей;
  • оптимальная атмосфера для новорожденных и грудничков.

Так как за бортом экстремальные условия, непосредственно в самолете установлены разные системы жизнеобеспечения. Такие же СКВ обеспечивают и кабину пилота.

Размещение кондиционера и его составные части

Над головой каждого пассажира есть кнопка запуска и сам отсек подачи потока кондиционированного воздуха. Состоит это приспособление из следующих деталей:

  • распределитель воздуха;
  • регулировщик давления;
  • обогрев;
  • охлаждение;
  • регулятор температуры.

Схема установки охлаждения самолета

Подача и рециркуляция воздушных масс осуществляется одновременно в салоне, кабине экипажа, а также туалетах и уборных на борту.

Блоки авионики также имеют свою систему кондиционирования. Она обеспечивает оптимальные показатели температуры воздуха в них.

Также присутствуют рециркуляционные устройства для отсеков багажного отделения. В результате при посадке пассажиры забирают свой багаж без посторонних запахов и абсолютно не отличающиеся по температурным показателям.

Подробный принцип работы

Рассмотрим по пунктам, как функционирует кондиционер летательного аппарата:

  1. Воздух от двигателей температурой 500 градусов с давлением 1,6 мПа отбирается в специальный отсек.
  2. Далее происходит разделение на два потока, вследствие чего производится его смешивание в специальном блоке.
  3. Для охлаждения воздух поступает в теплообменники: турбохолодильники, топливно-воздушные радиаторы, а также воздухо-воздушные радиаторы.
  4. Соответственно происходит несколько степеней охлаждения.
  5. Каждая из них имеет свой диапазон температур, который и предоставляет отработанному воздуху.
  6. Вторичные ТХ и ВВР, расположенные в носках крыльев самолета, обеспечивают пришедшему воздуху температуру, пригодную для дыхания.

Автоматический регулятор температуры имеет соответствующий датчик, который располагается в кабине и трубопроводе. Также присутствует блок автоматического управления и исполнительный механизм.

Система контроля показателей воздуха

В современных авиалайнерах система вентиляции редко оборудована заявленными датчиками, соответственно работа происходит автоматически.

При подаче чистого и охлажденного воздуха в кабине или салоне самолета может появиться туман. Он быстро рассеивается, поэтому пассажирам незачем пугаться.

Воздух на борту и его показатели

Воздух в самолете существенно отличается от того, который человек привык чувствовать. При этом разница для организма является значительной. Например, при взлете летательного аппарата пассажир начинает чувствовать некоторый дискомфорт на слизистых оболочках. Может заложить уши или начаться раздражение горла. Этому способствуют некоторые показатели.

Влажность воздуха

Этот параметр называют относительной влажностью воздуха. Ее величина составляет не более 20 %, чего очень мало для нормального функционирования дыхательной системы. В таких ситуациях человек обязан компенсировать недостаток влаги в собственном организме. Для этого на борту самолета предлагают различные освежающие напитки, воду. Во время длительных перелетов пренебрегать этим не стоит.

Особенности загрязнения воздуха

Комфорт и безопасность для дыхания на борту авиалайнеров достигается именно путем специальных средств и фильтров многократной очистки воздуха. Прежде чем воздух попадет в кабину экипажа или салон снова, он очищается.

Проблему загрязнения вызывают люди, а также некоторые природные факторы

Например, пассажир, являющийся носителем инфекции или пыль, попадающая на борт с ветром, а также с одежды людей. Чем выше концентрация пыли в воздухе на борту, тем серьезнее это влияет на состояние здоровья, соответственно, становится тяжелее дышать. В новых самолетах устанавливаются устройства-уловители, которые показывают количество вредных примесей в воздухе.

Как регулируют температуру воздуха в самолете

Тем, кто совершает полет впервые непонятно брать ли с собой на борт теплые вещи, ведь даже летом температура на большой высоте составляет –40 градусов. Современные авиалайнеры оборудованы системой отопления. Поэтому на борту самолетов поддерживается температура воздуха в диапазоне 15-20 градусов выше нуля.

Плюсовая температура поддерживается и в багажном отделении. Предположительный предел составляет 10-15 градусов тепла. Поэтому в отсеке можно перевозить продукты, а также лекарства без риска их порчи.

Принцип работы кондиционера при возгорании

В случае чрезвычайного происшествия на борту самолета, связанного с воспламенением, работа кондиционера происходит несколько иначе. Начинают срабатывать заслонки, которые предотвращают попадание дыма и гари в салон самолета от двигателя.

При таких авариях в системах запускается «вентиляция на малых высотах». Она работает при сильном задымлении кабины. Однако чтобы активировать этот режим, предварительно нужно снизить высоту полета до 4 000 метров, а затем только отключить датчик герметизации кабины и запустить систему кондиционирования воздуха.

Необходимость включения воздушного потока

Над каждым пассажирским креслом присутствует специальный пульт управления кондиционером и воздухозаборник, потребляющий поток и выдающий его обратно. Его нужно запускать сразу, как только самолет взлетел. Это делается для того, чтобы исключить попадание вирусов в организм. Благодаря воздушному барьеру происходит быстрое оседание патогенных микроорганизмов.

Однако, при выключении этой системы возникает еще одна проблема: при разговоре, чихании или кашле, вирусы активируются и снова поднимаются в воздух. Поэтому до завершения полета не рекомендуется выключать прибор. Если замерзли, лучше надеть теплую одежду.

Советуем ознакомиться со статьей на нашем сайте: что делать, если тошнит в самолете.

Кондиционер на борту самолета — это отдельная система, которая отвечает за несколько функций. Она создана специально для использования пассажирами. Каждый новый лайнер оборудован СКВ, поэтому бояться за собственную безопасность пассажиру не стоит.

О том, почему нужно включать кондиционер в самолете смотрите в видео:

СИСТЕМА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА САМОЛЁТА A-320

Конструкция и принцип работы системы

Рис. 25. Самолёт А-320

Система кондиционирования самолёта А-320 (рис. 25) открытого воздушного цикла с турбокомпрессором, петлевой схемой отделения влаги в линии высокого давления и частичной рециркуляцией кабинного воздуха [2]. Её принципиальная схема приведена на рис. 26.

Отбор воздуха в СКВ может производиться от компрессоров двигателей, ВСУ или наземного источника воздуха высокого давления.

При отборе воздуха от ВСУ его расход составляет: в жаркий день (+38 °С) 3300 кг/ч; в холодный день (-23 °С) 4500 кг/ч; в нормальный день (от -5 до +30 °С) 2950 кг/ч.

Номинальные значения подачи воздуха в систему: на земле – 3970 кг/ч, в полёте – 2940 кг/ч. Возможно изменение подачи в пределах 80. 120 % от нормы. В случае отключения одного блока охлаждения подача воздуха снижается до 60 % от нормы.

При отказе СКВ во время полёта обеспечивается подача воздуха от скоростного напора через специальный воздухозаборник, расположенный снизу с левой стороны фюзеляжа. Воздухозаборник открывается по команде пилота, при этом пилот должен снизить высоту полёта (менее 3048 м). В системе предусмотрена подача воздуха от наземного кондиционера при выключенных двигателях и ВСУ. В обоих этих случаях воздух подаётся непосредственно в коллектор холодного воздуха.

Рис. 26. Схема системы кондиционирования воздуха самолёта А-320 [18]

Система обеспечивает вентиляцию пассажирского салона и кабины экипажа в соответствии с нормами JAR, 25.831 (а) и (с), на всех режимах полёта, в том числе в нештатных ситуациях.

Отобранный в систему воздух из линии кольцевания через регуляторы расхода подаётся к двум одинаковым независимым установкам охлаждения (Pack-ам). Регуляторы расхода могут быть переключены в положения:

– “Low” (“низко”, 80 %), что может быть выбрано в целях экономии топлива по усмотрению пилота при уменьшенном числе пассажиров или, когда позволяют окружающие условия;

– “Normal” (“норм”, 100 %), что соответствует нормальным условиям эксплуатации;

– “High” (“высоко”, 120 %) – выбирается при ненормально жарких окружающих условиях или для удаления дыма;

– “закрыто” – для отключения установки.

Если выбран режим “норм” или “низко” и возникает отказ одной из установок охлаждения воздуха, регулятор расхода в линии другой установки автоматически переходит в режим “высоко”.

В состав установки охлаждения, схема которой показана на рис. 27, входят первичный воздухо-воздушный теплообменник, основной воздухо-воздушный теплообменник, трехколесная турбохолодильная машина (ТХУ), теплообменник-перегреватель, теплообменник-конденсатор, влагоотделитель.

Холодный воздух из установок охлаждения подаётся в коллектор холодного воздуха (рис. 26), установленный под полом кабины, где происходит его смешивание с рециркуляционным воздухом. Поступающий в подпольное пространство кабинный воздух просасывается через фильтры рециркуляционными вентиляторами и через обратные клапаны подаётся в коллектор. Расход рециркуляционного воздуха составляет от 37 до 51 % (в нормальных условиях) от суммарного.

Рис. 27. Схема установки охлаждения (Pack) или вторичного узла охлаждения [18]

Воздух из коллекторов холодного и горячего воздуха смешивается и поступает в систему распределения (рис. 28). Пассажирская кабина условно разделяется на две зоны – переднюю и заднюю. Подача воздуха в эти зоны и регулирование температуры в них производится независимо. Подготовленный воздух распределяется в каждой зоне по трубопроводам, расположенным по правому и левому бортам в подпольной части кабины.

Рис. 28. Схема подачи воздуха в пассажирский салон самолёта А-320 [2]: 1 – подача воздуха через верхние выпускные отверстия, 2 – подача воздуха через нижние выпускные отверстия, 3 – трубопровод подачи воздуха в верхнюю зону, 4 – выпуск воздуха из салона, 5 – левый трубопровод подачи воздуха в переднюю (заднюю) зону.

Из этих трубопроводов воздух поступает в равномерно распределённые по длине салона трубопроводы, подающие воздух в верхнюю зону салона. Через верхние и нижние выпускные отверстия, расположенные над и под багажными полками соответственно, воздух поступает в кабину. Выход воздуха в подпольное пространство производится в нижней зоне у стенки.

Достоинствами данной системы являются следующие оригинальные конструктивные решения:

1. Режим рециркуляции кабинного воздуха – в зависимости от количества пассажиров;

2. Отбор воздуха в зависимости от режима работы двигателя осуществляется либо от 5-ой, либо от 9-ой ступени компрессора;

3. Обеспечение в полёте подвода воздуха в случае отказа даже двух двигателей (за счёт забора наружного воздуха на прямую в салон через открывающиеся аварийные воздухозаборники);

4. Автоматизированная система (в плане управления).

Система кондиционирования самолета. Вентиляция самолета.

Система кондиционирования самолета является бортовой системой жизнеобеспечения и предназначена поддерживать температуру и давление воздуха в герметической кабине самолета на уровне, позволяющем обеспечить нормальную жизнедеятельность пассажиров и экипажа. Герметичность кабин обеспечивает их конструктивное исполнение, наличие уплотнений на люках и дверях, постоянный наддув от СКВ.

Подъем на высоту более 3 км вызывает у человека появление признаков кислородного голодания. Поднятие на более чем 9 км в высоту грозит аэроэмболизмом (выделением из жидкости организма пузырьков газа). На высоте более 19 км происходит закипание подкожной жидкости. Температура воздуха на высоте 11 км достигает -60°C. Чтобы обеспечивать нормальный для жизнедеятельности режим в настолько экстремальных условиях, были созданы различные бортовые системы жизнеобеспечения.

Система работает на воздухе, который отбирается от компрессоров работающих авиационных двигателей. Температура такого воздуха достигает 500°C, давление – 1,6 МПа. При этом воздух разделяется на 2 потока. Первый поток (холодная линия), проходя сквозь систему охлаждения, направляется в смеситель. Второй поток идет в смеситель напрямую. В смесителе происходит смешивание обеих потоков, этот воздух направляется в гермокабину. Также в самолетах горячий воздух используют как компонент противообледенительной системы, он проходит по трубах, расположенных под обшивкой летательного аппарата, и обогревает поверхность для предотвращения нарастания льда.

Контроль воздуха на приборной панели А320

Чтобы охладить воздух, используют теплообменники следующих типов: турбохолодильники (ТХ), топливно-воздушные радиаторы (ТВР) и воздухо-воздушные радиаторы (ВВР). В сложной системе кондиционирования могут использоваться несколько ступеней охлаждения воздуха, расположенных каскадов. Каждая ступень имеет свои автоматические регуляторы температуры. Например, на самолете Ту-154 отобранный воздух от двигателей охлаждается сначала в ТХ и ВВР, расположенных возле 3-го двигателя, затем подается к СКВ и ПОС, а в СКВ есть два вторичных ТХ и ВВР (расположенные в носке корневой части крыла, для продува ВВР в каждом крыле имеется небольшой воздухозаборник), охлаждающих воздух до нормальной для дыхания температуры.

В состав автоматического регулятора температуры (АРТ) входит задатчик температуры, расположенный в кабине, датчик температуры в трубопроводе, электронный блок автоматического управления и исполнительный электромеханизм (регулирующая заслонка в трубопроводе). Большая часть регуляторов в системе кондиционирования воздуха самолета может не комплектоваться задатчиком температуры в кабине и функционирует в автоматическом режиме.

Два прямоугольных теплообменника (воздухо-воздушных радиатора = ВВР) серебристого цвета

Подача охлажденного воздуха в салон/кабину летательного аппарата из воздуховодов системы кондиционирования может вызвать образование тумана, который постепенно рассеивается, когда система начинает работать в устойчивом режиме. Чтобы устранить это явление, на стадии проектирования самолета предусматривают специальные меры (сбор конденсата из дренажных отверстий системы кондиционирования в забортное пространство).

В гермокабинах давление регулируется с учетом специальных программ, которые различаются на транспортных воздушных судах, тяжелых и маневренных боевых самолетах. Для тяжелых самолетов на высотах до 2000 м вводится зона свободной вентиляции, выше – зона абсолютного постоянного давления и зона избыточного давления относительно типичной атмосферы. Для маневренных самолетов, чтобы уменьшить скорость изменения давления в гермокабине при исполнении вертикальных маневров в пределах 2-7 км, ввели зону переменного давления. С помощью автомата регулирования давления происходит строго дозированный сброс избыточного воздуха из герметичной кабины в забортное пространство. Данный автомат на военных самолетах имеет нормальный и боевой режимы работы. При использовании автомата в боевом режиме внутри кабины давление резко уменьшается – такая технология применяется с целью предотвращения получения экипажем баротравм при резкой разгерметизации, например, в случае поражения самолета снарядом. Повреждение целостности кабины пулеметно-пушечным огнем при полете на больших высотах вызывало взрывную декомпрессию во времена Второй мировой войны и гибель экипажей.

Между паком и нишей шасси, снизу, находится выходное отверстие для продувочного воздуха.

Кондиционированный воздух подается не только в гермокабину, но и в технические отсеки, где расположено электронное оборудование, чтобы поддерживался нормальный температурный режим работы агрегатов и блоков. На бомбардировщиках, которые могут нести ядерное оружие, СКВ обогревает полностью весь негерметичный бомболюк самолета, поддерживая температуру на уровне выше 0°C (управляемые ракеты с ядерным зарядом имеют внутреннюю термостабилизацию). Наличие на борту самолета вспомогательной силовой установки подразумевает также отбор воздуха для кондиционирования кабин и отсеков от ВСУ.

При возникновении аварийной ситуации, для быстрого прекращения вентиляции кабины, при пожаре в двигателе и подаче дыма в кабину из воздуховодов в СКВ имеются аварийные заслонки, которые моментально перекрывают трехходовые трубопроводы или краны, которые плавно управляют заслонкой в нормальном режиме на открытие-закрытие. Аварийный режим системы кондиционирования предусматривает работу электромотора только на закрытие в форсированном режиме. Также во время аварийных ситуаций действует программа вентиляции от скоростного напора, которая служит для проветривания кабины в случае задымления. Для этого пилоту необходимо снизить высоту самолета до 4000 м, разгерметизировать кабину и включить систему вентиляции.

Откуда в салоне самолета, летящего на высоте 10 000 метров, берется кислород

Представьте, что вы удобно расположились в кресле самолета и наслаждаетесь полетом, мечтая о приближающемся отпуске на морском берегу или о встрече с близкими. А для того, чтобы вам было удобно и комфортно, так же как и на земле, в авиалайнерах предусмотрены специальные системы, отвечающие за качество воздуха в салоне.

Пассажирские самолеты летают на высоте от 9 до 12 тысяч метров. Все зависит от модели, поскольку у каждой из них есть своя «идеальная» высота, на которой лайнер расходует минимальное количество топлива и испытывает небольшое сопротивление. После того, как самолет взлетел и набрал высоту, он оказывается в атмосферном воздухе, параметры которого сильно отличаются от таковых у поверхности. Того воздуха, который есть в салоне, хватает примерно на 15-20 минут полета, а дальше в нем падает содержание кислорода и им становится невозможно дышать. Но для того, чтобы добавить свежего воздуха в салон, не получится просто открыть для проветривания люк. Дело в том, что содержание кислорода на такой высоте уменьшается до 7-8%, в то время как внизу этот показатель равен 21%. А атмосферное давление за бортом (второй не менее важный показатель воздуха) снижается до 170-250 мм. рт. ст., вместо привычных для нас 740-760 мм. рт. ст.

Но с увеличением высоты даже при неизменном процентном соотношении компонентов воздуха парциальное давление кислорода падает, что приводит к общему снижению уровня кислорода в крови человека, да и любого другого живого существа. Поэтому недостаточно просто обогатить атмосферный воздух кислородом, необходимо привести в норму и давление.

Для обеспечения комфортных условий во всех авиалайнерах работает специальная система кондиционирования воздуха. Система забирает воздух, который находится за бортом и сжимает его с помощью компрессоров. Благодаря этому плотность кислорода в нем повышается до приемлемых значений. Одновременно с этим происходит выравнивание параметров температуры до комфортного уровня.

Что касается давления, то в салоне авиалайнера поддерживается более низкое давление, чем то, что соответствует уровню аэропорта. Как правило, это 600-650 мм. рт. ст., что соответствует высоте 1300-1800 метров над уровнем моря. Считается, что это нижняя граница комфортного для человека атмосферного давления воздуха.

Но у системы кондиционирования есть один существенный недостаток: воздух, попадающий в салон, слишком сухой. Разреженный в атмосфере, он содержит меньше влаги, а при доставке в салон осушается дополнительно. Делается это для того, чтобы в патрубках системы кондиционирования не намерзал лед, который может привести к ее закупорке. Поэтому некоторые пассажиры испытывают постоянную жажду во время полета, а также жалуются на сухость в глазах и горле.

Кондиционирование воздуха на самолёте Boeing-737 NG

Именно поэтому сегодня мы поговорим о системе кондиционирования воздуха.

Надо под сказать, что система кондиционирования воздуха (СКВ) на самолётах обычно считается довольно сложной.
Но я постараюсь, чтобы все даже поняли, зачем оно там растёт и как работает. Не говоря уже о с важным видом объяснить соседу по полати.
Поэтому сначала обучимся теории, а там и до фоток дойдёт.

1. Для чего это нужно?
Человек любит дышать. Ему это как-то надо. Всё время.
Дышать ему надо в определённом диапазоне давления и температуры воздуха, иначе к счастливым родственникам долетят не все. Ведь на высоте давления воздуха мало, и он ещё и очень холодный.
Человеков в салуне много.
И вот это много надо снабдить воздухом в потребном количестве и комфортной температуры (и давления).
Этим, собственно, и занимается СКВ.

2. Из чего ён состоит и где находится?
В составе СКВ много всяких разных штук, но принципиально мы имеем следующее:
2.1. Систему отбора воздуха от двигателей и вспомогательной силовой установки (ВСУ).
2.2. Систему подготовки воздуха.
2.3. Систему распределения воздуха до потребителей.
Сегодня мне интересно рассказать о большей части именно что второго кусочка этой всем хорошей системы.

3. Как оно выглядит и работает.
Как всем нам давно уже стало понятно, бОльшая часть работы по подготовке воздуха выполняется как раз установками кондиционирования (Air Conditioning Packs), так что про эти самые паки (иже херувимы) я сейчас и немножко покажу и расскажу.
Паки обычно находятся под салоном, в районе центроплана. Вот мы как раз и откроем створочку:

Видим мы там примерно следующее:
два здоровых теплообменника (воздухо-воздушных радиатора = ВВР) серебристого цвета

, левее – чёрные пластиковые кожухи для прососа воздуха через ВВРы, и много труб.

Тут вот какая штука.
Воздух для работы системы отбирается от компрессора ВСУ или от компрессоров двигателей (если они запущены).
Там он очень горячий – сотни градусов. Если бы мы жили только зимой, то всё было бы попроще – охладили бы его, да и подали в салон.
Но у нас ведь бывают и весьма положительные температуры, при которых хочется салон не то чтобы не сильно подогреть, а очень даже и охладить.
Поэтому в СКВ мы должны поиметь холодильник неслабой такой производительности (салон на 170 горячих парней – ага?), причём желательно, чтобы он работал без привлечения сторонних ресурсов вроде электроэнергии.
Такая задача хорошо решилась с привлечением законов физики.
Как известно, воздух, как и любой газ, охлаждается при расширении. А ещё лучше он охлаждается, если у него ещё и отобрать энергию принуждением к работе.
Оба два этих способа используются в устройстве, называемом “турбохолодильник” (по-английски используют термин Air Cycle Machine = ACM). Вот он серенький такой чуть левее середины:

В нём бывший горячий воздух (а сейчас слегка уже охлаждённый в ВВР), но всё ещё под давлением, совершает работу по вращению турбины, и при этом расширяется и охлаждается.

Теперь можно уже упрощённо объяснить работу СКВ в целом.
Горячий воздух отбирается от ВСУ или двигателей,
предварительно охлаждается в теплообменниках (ВВР),
затем приводит турбину турбохолодильника и охлаждается там до температуры чуть выше нуля (чтобы не замёрзли пары воды),
а потом к нему подмешивается горячий воздух в количестве, необходимом для получения заданной из кабины температуры.
И в результате мы получаем в салоне прохладный воздух летом или тёплый – зимой.

Ещё немного деталей.

Вот такой хитрой формы воздухозаборник имеется практически у всех самолётов.

Через него забирается воздух на продувку ВВР. По этому характерному виду можно сразу понять, где у самолёта находятся паки кондиционирования.
У большинства самолётов паки находятся снизу центроплана.
А вот у Ан-148 – сверху:

(заборник воздуха – в правом верхнем углу фото)
Ну, и ещё у некоторых оригиналов они бывают в носу.

Проходное сечение канала воздухозаборника регулируется. На 737 – подвижной стенкой входной части канала со стороны фюзеляжа.
Этим регулируется охлаждение ВВР – ведь на высоте набегающий поток очень холодный (-60 градусов) и скоростной, так что створочку лучше прикрыть.

Характерным для 737 является наличие щитка перед каналом воздухозаборника:

Его установили, чтобы меньше всякой гадости попадало на разбеге – ведь фюзеляж у 737 сидит довольно низко, а грязь из-под передних колёс иногда летит.
У Эйрбасов входники находятся гораздо выше, и там таких щитков нету.

Между паком и нишей шасси, снизу, находится выходное отверстие для продувочного воздуха:

Оттуда дует слегка тёплым, и зимой там может быть интереснее, чем вокруг.

Кстати, во время стоянки, когда нет набегающего потока для продувки ВВРов, воздух через них просасывается вентилятором, который приводится той самой турбиной турбохолодильника.
Вот и полезная работа, которую он совершает при охлаждении воздуха. Сам себя обеспечивает, так сказать 🙂

При охлаждении воздуха содержащиеся в нём парЫ воды конденсируются в капли. Эта вода отводится из холодного воздуха, и впрыскивается в поток, направляемый на ВВРы. Таким образом, испаряя эту воду, они охлаждаются ещё сильнее.

Тэк-с. воздух мы с горем пополам охладили.
Теперь как бы порегулировать и вообще в тепло.

Регулировка температуры воздуха производится подмешиваением к холодному воздуху горячего.
На 737-800 вся герметичная часть фюзеляжа разделена на три условных зоны: кабина экипажа, передняя и задняя части пассажирского салона. Тремя же клапанами и подмешивается горяченькая.
Соответственно, в кабине экипажа, на потолочной панели, имеются три задатчика температуры:

(вот они внизу фотки)
Над ними находятся индикаторы отказа соответствующих каналов контролирующей аппаратуры.
Ещё выше – выключатель подмешивания горячего воздуха.
Слева вверху – прибор для контроля температуры воздуха в магистралях и в салоне.
Вверху справа – переключатель для выбора, а чего, собственно, температуру смотреть будем.

При отказе регулирования температуры воздуха паки сами перейдут на выдачу какой-то средней температуры вроде +24 градусов.

Для того, чтобы поэкономить на воздухе, обычно работают вентиляторы рециркуляции воздуха в пассажирской кабине.
Вот их выключатели как раз присели на соседней панели сверху:

Вентиляторы сосут воздух из салона через боковые нижние панели, затем он очищается фильтрами и подмешивается к свежему воздуху из паков.
Воздух же в кабину пилотов всегда подаётся только свежий.

Ниже выключателей, посредине, виден прибор, показывающий давление воздуха в магистралях.
Под ним – тумблер клапана кольцевания левой и правой воздушных магистралей. Как видно, воздух от каждого двигателя подаётся к своему паку, а ВСУ подключена к левой магистрали.
По сторонам от него – тумблеры включения паков.
Ниже – сигнальные табло неисправностей разных частей системы подготовки воздуха.
И в самом низу – включение отбора воздуха от ВСУ и двигателей.

В заключение залезем на территорию системы регулирования давления воздуха внутри самолёта.
Воздух внутрь салона подаётся через паки под постоянным давлением.
Регулирование давления внутри салона производится автоматической системой, регулирующей стравливание воздуха через выпускной клапан.
Он находится справа сзади самолёта, примерно под задней правой дверью (обведён красным):

Клапан представляет собой две створки, которые могут приводиться от трёх разных электродвигателей (для запаса на случай отказа).

На случай, когда вообще всё плохо, предусмотрены ещё два совсем уж аварийных чисто механических клапана, открывающихся при превышении определённого давления внутри фюзеляжа по отношению к забортному.
Вот эти клапаны выше и ниже выпускного клапана:

Если же вдруг давление внутри фюзеляжа станет ниже, чем снаружи, то клапаны отрицательного перепада откроются и выровняют этот перепад, впустив воздух внутрь самолёта:

Также на случай разгерметизации багажников имеются вышибные панели на потолке багажников.
Если вдруг образуется слишком большой перепад давления между багажниками и салоном, панели выдавятся и пустят воздух для выравнивания этого перепада.
Это нужно для того, чтобы не сложился пол салона.

Пожалуй, теперь про паки я вкратце рассказал.

Система кондиционирования воздуха воздушного судна

Требования норм летной годности самолетов к системе кондиционирования воздуха. Разработка системы кондиционирования воздуха среднемагистрального пассажирского самолета Ту-204 с помощью тепловлажностного расчета. Расчет приращения взлетной массы самолета.

РубрикаТранспорт
Видреферат
Языкрусский
Дата добавления29.03.2015
Размер файла123,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Академия Гражданской Авиации

Система кондиционирования воздуха – одна из бортовых систем жизнеобеспечения. СКВ предназначена для поддержания давления и температуры воздуха в гермокабине летательного аппарата на уровне, обеспечивающем нормальную жизнедеятельность экипажа и пассажиров. Герметичность кабин обеспечивается их конструктивным исполнением, наличием уплотнений на дверях и люках, а также постоянным наддувом от СКВ.


С развитием авиации развивалась и система кондиционирования воздуха (СКВ). С ростом высоты, скорости и времени полета появились гермокабины (КБ), подсистема кислородного питания, охлаждение ГК и БРЭО. Основной целью СКВ является создать на борту самолета условия для жизнедеятельности человека в полете: поддержание заданного давления, температуры и влагосодержания воздуха, очищение воздуха от вредных примесей и охлаждение БРЭО.


Кондиционированием воздуха называют автоматическое поддержание в кабинах ЛА параметров воздуха (температуры, давления, относительной влажности, чистоты и скорости движения) на определенном уровне с целью создания комфортных условий для экипажа и пассажиров в полете и на земле и обеспечения необходимых режимов работы охлаждаемого бортового оборудования.


Основные требования норм летной годности самолетов к работе СКВ и ее подсистем сводятся к следующим:


· СКВ должна обеспечивать заданные значения давления, влажности и газового состава воздуха в кабине на всех режимах полета и на земле независимо от внешних климатических условий. Функционирование СКВ в кабине не должно зависеть от работы других систем, использующих общие с ней источники сжатого воздуха.


· Наддув кабины должен осуществляться двумя или более источниками сжатого воздуха. При этом СКВ должна состоять не менее чем из двух независимых подсистем, поддерживающих в полете нормальные температурные условия в кабинах при выходе из строя одной из них.


· Температура воздуха в кабине и в отсеках должна задаваться и управляться независимо.


· Должна предусматриваться возможность обогрева и охлаждения кабин на земле без запуска двигателей с помощью бортовых и наземных устройств.


· На самолетах с продолжительностью полета больше двух часов необходимо предусматривать систему увлажнения для поддержания относительной влажности в кабине не менее 25%.


Целью данной работы является разработка системы кондиционирования воздуха среднемагистрального пассажирского самолета Ту-204 с помощью тепловлажностного расчета, т.е. определение таких параметров агрегатов СКВ, при которых температура и относительная влажность воздуха в кабине самолета находились бы в заданных пределах.


Расчет СКВ производиться приближенным методом на двух режимах работы СКВ: при стоянке самолета и в режиме крейсерского полета. Эти два режима являются предельными и любое изменение внешних параметров влияющих на работу СКВ ограничено ими. Внутренние параметры проектируемой СКВ определяются техническим заданием на ее разработку.


Помимо этого, в данной работе, производится расчет приращения взлетной массы самолета, вызванного установкой на нем данной СКВ, приближенный расчет трубопроводов системы кондиционирования и предлагаемая схема компоновки агрегатов и элементов СКВ на самолете.


С подъёмом на высоту более 3 км у человека появляются признаки кислородного голодания. На высотах более 9 км из жидкости организма возможно выделение пузырьков газа (аэроэмболизм). На высотах более 19 км наблюдается закипание подкожной жидкости. Температура воздуха на высоте более 11 км может достигать ?60°C. Для полёта на летательном аппарате в таких неблагоприятных для жизни условиях и потребовалось создать бортовые системы жизнеобеспечения.


Принцип работы


Для охлаждения воздуха применяют следующие типы теплообменников – воздухо-воздушные (ВВР) или топливно-воздушные радиаторы (ТВР) и турбохолодильники (ТХ). В сложных системах кондиционирования могут применяться несколько ступеней (каскадов) для охлаждения воздуха, и каждая – со своими автоматическими регуляторами температуры, например, на Ту-154 отобранный от двигателей воздух охлаждается в первичных ВВР и ТХ, установленных возле третьего двигателя, и подаётся к ПОС и СКВ, а в СКВ имеются по два вторичных ВВР и ТХ (установленных в носках корневых частей крыльев, для продува ВВР в крыльях сделаны небольшие воздухозаборники), охлаждающих воздух до пригодной для дыхания температуры. Типовой регулятор температуры состоит из задатчика температуры в кабине, датчика температуры в трубопроводе, блока автоматического управления и исполнительного электромеханизма – регулирующей заслонки в трубопроводе.

кондиционирование воздух самолет

Давление воздуха в гермокабинах регулируется по специальным программам, которые несколько различаются на пассажирских (транспортных) машинах, тяжёлых маломанёвренных и манёвренных военных самолётах. Характерной программой для тяжёлых самолётов будет зона свободной вентиляции, зона постоянного абсолютного давления и зона постоянного избыточного давления относительно стандартной атмосферы. Для манёвренных самолётов с целью уменьшения скорости изменения давления в кабине при вертикальных манёврах на высотах в пределах 2-7 км в программу регулирования вводится зона переменного давления. Регулирование давления производится автоматом регулирования (АРД) путём сброса избыточного воздуха из гермокабины. На военных самолётах данный автомат имеет два режима работы – нормальный и боевой. В боевом режиме давление в кабине будет уменьшено – это делается для предотвращения баротравм у экипажа при резкой разгерметизации на больших высотах в случае, например, попадания снарядов. Повреждения гермокабины пулемётно-пушечным огнём истребителей при полёте на больших высотах вызывали гибель экипажей бомбардировщиков Второй Мировой войны.

Кондиционированный воздух может подаваться не только в гермокабины, но и в технические отсеки для продува разнообразного электронного оборудования. При наличии на борту ВСУ воздух от компрессора ВСУ также отбирается в СКВ для наземного кондиционирования (обогрева или охлаждения) кабин и отсеков.

Система охлаждения воздуха


Преимущество этой схемы СКВ перед схемами с влагоотделением в линии низкого давления заключается в более высокой степени осушки охлаждаемого воздуха. Применение второй ступени промежуточного сжатия охлаждаемого воздуха позволяет повысить экономичность и тепловую эффективность СКВ, а подогрев воздуха перед турбиной – увеличить ресурс работы турбохолодильника. Воздух из системы отбора подается в систему охлаждения через регулятор расхода. Сначала воздух охлаждается в предварительном теплообменнике АТ1 до некоторой температуры (определена в п.3), затем поступает в компрессор КМ турбохолодильной установки ТХ. После компрессора воздух поступает в “петлю” отделения влаги перед турбиной Т, которая образована регенеративным теплообменником АТ3, для испарения конденсата, и конденсатором АТ4 для конденсации влаги. Охлаждение воздуха в конденсаторе до необходимой температуры производится воздухом, выходящем из турбины. Водный конденсат отделяется во влагоотделителе ВД и впрыскивается в магистраль продувки основного теплообменника и далее в атмосферу. От установок охлаждения левого и правого борта воздух поступает в единый коллектор холодного воздуха, а оттуда – в кабину.


Рис. 1. Двухступенчатая система охлаждения с влагоотделением высокого давления.


Система кондиционирования воздуха воздушного судна содержит трубопровод для подачи свежего воздуха, который должен передаваться в кабину воздушного судна. Свежий воздух вдувается в кабину воздушного судна через выпуск. Вблизи выпуска расположена циклонная установка, имеющая основной корпус, распределительный элемент, впускное отверстие, которое сообщается с трубопроводом для подачи свежего воздуха, всасывающее отверстие, через которое воздух всасывается из кабины воздушного судна. Всасывающее отверстие сообщается непосредственно с кабиной воздушного судна. В основном корпусе циклонной установки создается первый циклонный поток за счет свежего воздуха, поступающего из трубопровода. В распределительном элементе создается второй циклонный поток за счет свежего воздуха первого циклонного потока, служащего в качестве приточного воздуха, и воздуха кабины. Воздух кабины всасывается через всасывающее отверстие из кабины воздушного судна и выбрасывается вместе со свежим воздухом через выпускное отверстие. Достигается повышение эффективности системы кондиционирования воздуха. 8 з. п. ф-лы, 3 ил.

Размещено на Allbest.ru

Подобные документы

Выбор и обоснование принципиальной схемы системы кондиционирования, ее тепло-влажностный расчет и область применения. Приращение взлетной массы самолета при установке на нем данной СКВ. Сравнение альтернативной СКВ по приращению взлетной массы.

курсовая работа [391,1 K], добавлен 19.05.2011

Факторы, влияющие на жизнедеятельность человека в полете. Требования к составу и чистоте воздуха герметической кабины. Основные агрегаты авиационных систем кондиционирования воздуха. Обзор комплексной системы кондиционирования воздуха самолета Ту-154М.

дипломная работа [3,5 M], добавлен 11.03.2012

Назначение системы кондиционирования воздуха (СКВ) самолета, определение состояния ее работоспособности. Описание устройства СКВ. Органы управления и индикация. Система подачи, рециркуляции воздуха. Работа систем регулирования давления и обогрева воздуха.

курсовая работа [4,6 M], добавлен 15.10.2015

Техническое описание самолета. Система управления самолетом. Противопожарная и топливная система. Система кондиционирования воздуха. Обоснование проектных параметров. Аэродинамическая компоновка самолета. Расчет геометрических характеристики крыла.

курсовая работа [73,2 K], добавлен 26.05.2012

Аэродинамическая компоновка самолета. Фюзеляж, крыло кессонного типа, оперение, кабина экипажа, система управления, шасси, гидравлическая система, силовая установка, топливная система, кислородное оборудование, система кондиционирования воздуха.

курсовая работа [2,4 M], добавлен 14.05.2015

Назначение депо и его структура. Расчет фронта и ритма работы сборочного цеха и малярного участка. Современные системы кондиционирования воздуха. Основные системы вентиляции воздуха пассажирских вагонов. Характеристика опасных зон на оборудовании.

дипломная работа [5,3 M], добавлен 01.04.2017

Термогазодинамический расчет ТРДД для среднемагистрального самолета пассажирского назначения. Расчет основных параметров и узлов двигателя: компрессоров и турбин низкого и высокого давления, вентиляторов. Уровень загрузки турбин; профилирование лопатки.

курсовая работа [4,4 M], добавлен 19.02.2012

Схемы крыла, фюзеляжа, оперения, шасси и двигателей самолета. Удельная нагрузка на крыло. Расчет стартовой тяговооруженности, взлетной массы и коэффициента отдачи по коммерческой нагрузке. Определение основных геометрических параметров самолета.

курсовая работа [805,8 K], добавлен 20.09.2012

Определение взлетной массы самолета в нулевом приближении. Выбор конструктивно-силовой схемы самолета и шасси. Определение изгибающего момента, действующего в крыле. Проектирование силовой установки самолета. Электродистанционная система управления.

дипломная работа [9,1 M], добавлен 01.04.2012

Статистическое проектирование облика самолета. Расчет поляр и аэродинамического качества во взлетной, посадочной и крейсерской конфигурациях. Конструкция лонжерона крыла. Технологический процесс листовой штамповки. Определение себестоимости самолета.

дипломная работа [2,1 M], добавлен 17.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

Обзор существующих систем кондиционирования воздушных судов

Рубрика: Технические науки

Дата публикации: 13.11.2016 2016-11-13

Статья просмотрена: 1135 раз

Библиографическое описание:

Ткачева В. Р., Галка Г. А. Обзор существующих систем кондиционирования воздушных судов // Молодой ученый. — 2016. — №23. — С. 91-96. — URL https://moluch.ru/archive/127/35276/ (дата обращения: 13.11.2019).

В данной статье рассматриваются современные системы кондиционирования воздуха летательных аппаратов, их принципиальные схемы, а также достоинства и недостатки.

Ключевые слова: летательный аппарат, кондиционирование, нормальные условия существования, система кондиционирования, наддув, воздухо-воздушный теплообменник, турбохолодильник, испарительный теплообменник

Летательный аппарат (ЛА) — это техническое устройство, предназначенное для полетов в космическом либо воздушном пространстве. Чем выше ЛА поднимается над поверхностью земли, тем больше отличаются условия за его бортом от нормальных наземных условий существования человека. В первую очередь это понижение температуры и атмосферного давления.

Как известно экипаж и оборудование могут существовать в нормальных наземных условиях либо при их незначительных отклонениях. Такие условия создаются системами жизнеобеспечения ЛА и экипажа, одной из которых является система кондиционирования воздуха (СКВ).

Кондиционирование воздуха представляет собой автоматическое поддержание в помещениях требуемых параметров воздуха с целью создания, главным образом, оптимальных (комфортных) условий жизнеобеспечения людей. Кондиционирование воздуха и комплекс технических решений в совокупности представляют собой систему кондиционирования воздуха (СКВ).

В состав СКВ входят технические средства приготовления, перемешивания и распределения воздуха, приготовления холода, а также технические средства хладо- и теплоснабжения, автоматики, дистанционного управления и контроля [2].

Системы кондиционирования ЛА являются частным случаем СКВ, в них осуществляется обработка воздуха в более сложных условиях и по большему числу параметров, таких как температура, относительная влажность, чистота, скорость движения [1]. Данные системы находятся на более высоком уровне по сравнению с наземными системами кондиционирования.

СКВ воздушных судов предусмотрены для создания и поддержания в них:

– установленных нормами допускаемых условий воздушной среды;

– искусственных климатических условий в соответствии с технологическими требованиями производства;

– оптимальных (или близких к ним) гигиенических параметров воздушной среды в производственных помещениях;

Рис. 1. Схема размещения элементов системы кондиционирования: 1 — выпускные и предохранительные клапаны; 2 — клапан сброса; 3 — вентиляторы охлаждения радиоаппаратуры; 4 — распределительный трубопровод кабины экипажа; 5 — рециркуляционный трубопровод; 6 — кабина холодильной установки; 7, 21 — холодильный испарительные установки; 8, 22 — распределительные трубопроводы пассажирской кабины; 9 — рециркуляционный трубопровод. 10 — подводящий трубопровод левой системы; 11, 16, 18 — воздухозаборники, 12, 17 — кабинные нагнетатели, 13 — выпускной и предохранительный клапаны; 14, 24 — устройство для увеличения тяги; 15 — теплообменник; 19 –подводящий тркбопровод правой системы; 20, 23 — подводящий трубопровод жалюзи

В общем случае бортовая система кондиционирования в герметичной кабине при любых атмосферных условиях и для всех режимов полета должна поддерживать заданные давление, температуру, влажность, физико-химический состав воздуха, а также допустимый уровень шума [1].

В соответствии с этими задачами в СКВ воздушных судов (рис.1):

  1. агрегаты оборудования;
  2. приборы автоматического регулирования;
  3. приборы ручного управления;
  4. контрольная аппаратура;
  5. сигнализационная аппаратура;
  6. вспомогательное оборудование.

Основные требования норм летной годности самолетов к работе СКВ:

  1. СКВ ЛА должна обеспечивать заданные параметры воздух на всех режимах полета, а также на земле независимо от внешних климатических условий.
  2. Функционирование СКВ в кабине не должно зависеть от работы других систем, использующих общие с ней источники сжатого воздуха.
  3. СКВ должна состоять из основной и дублирующей подсистем, где вторая подсистема поддерживает нормальные условия существования экипажа, пассажиров и оборудования при выходе из строя первой.
  4. Температура воздуха в кабине и в отсеках должна задаваться и управляться независимо.
  5. На ЛА с продолжительностью полета больше двух часов необходимо предусматривать систему увлажнения.

На воздушных судах применяют следующие виды СКВ:

  1. Одноступенчатые двухкаскадные системы кондиционирования воздуха;
  2. Одноступенчатые трехкаскадные системы кондиционирования воздуха;
  3. Двухступенчатая четырехкаскадная система кондиционирования воздуха.

Рассмотрим некоторые из перечисленных систем кондиционирования воздуха.

Одноступенчатые двухкаскадные системы кондиционирования самолетов делятся на систему с конвективным теплообменом (см. рис.2) и систему с панельным теплообменом (см. рис.3).

В СКВ с конвективным теплообменом атмосферный воздух забирается воздухозаборником, очищается от механических примесей в фильтре и поступает в компрессор двигателя. Основная масса воздуха после сжатия в компрессоре направляется в камеру сгорания самолетного двигателя, а часть его отбирается в СКВ кабин. После воздух проходит перекрывной кран, регулятор — ограничитель абсолютного давления, обратный клапан, газовый фильтр и через распределительный кран поступает в другие агрегаты системы кондиционирования [1].

Воздух охлаждается в воздухо-воздушном теплообменнике забортным воздухом, подаваемым под скоростным напором или нагнетаемым вентилятором турбохолодильника непосредственно на турбину или в компрессор. При этом первым каскадом охлаждения является теплообменник, а вторым — турбохолодильник.

Окончательно охлажденный воздух поступает во влагоотделитель для предотвращения попадания влаги в СКВ. Но перед поступлением в коллектор кабины воздух увлажняется. Из коллектора воздух направляется по трубопроводам к отдельным агрегатам и в кабину.

Температура воздуха в пассажирской кабине регулируется при помощи термостата.

Рис. 2. СКВ с конвективным теплообменом: 1-воздухозаборник двигателя; 2,9-фильтры(ф); 3-компрессор двигателя(к); 6,27-обратные клапаны; 7-штуцер к наземному кондиционеру; 8,18,26,58,61-заслонки; 10-распределительный кран; 11-сепаратор влаги; 12,64-генераторы тепла; 13-воздухозаборники теплообменника; 14-воздухо-воздушный теплообменник(ВВТ); 15-выходная заслонка; 16-турбохолодильник(ТХ); 17-влагоотделитель; 19-глушитель шума: 20-расходомер воздуха; 21-смеситель; 22-датчик температуры; 23-задатчик температуры; 24,44-регуляторы расхода (Рр); 25,55-увлажнители; 28-воздух из туалета; 29-привод заслонки; 30-заслонка; 31-регулятор влажности (Рв); 32,33,39-распределители воздуха; 34-пассажирская кабина; 35-термостат; 36-электромагнитный клапан; 37-бак для воды; 38-термометр; 40-сервопривод; 42-регулятор давления(Рд); 43,46-предохранительные клапаны; 44,62-межкабинные клапаны; 45-бчок для воды; 47-ограничитель температуры остекленения; 48-осушительный патрон 49-щиток; 50-кабина экипажа; 51-электромагнитный клапан; 52,63-расходомер; 53,67-дроссельная заслонка; 54-регулятор влажности; 56-воздух в камбуз; 57-термостат; 59-воздух в туалет; 60-выброс воздуха в атмосферу; 65-регулятор давления; 66-воздухозаборник; 68-воздух из атмосферы

Рассмотренная система кондиционирования получила широкое распространение, но она имеет два существенных недостатка: перепад между температурой внутренней стенки кабины и воздухом и неравномерность распределения охлаждающего воздуха по кабине, вследствие чего температура воздуха может отличаться от требуемой.

Для их устранения используют систему кондиционирования с панельным теплообменом, в которой воздух, отбираемый от двигателя, поступает в воздухо-воздушный теплообменник и турбохолодильник. Далее воздух поступает через обратный клапан, увлажнитель и другие элементы системы в обогревательные панели кабины, саму кабину экипажа и пассажирскую кабину. После он выбрасывается в атмосферу через насадки [1].

Рис. 3. Система кондиционирования с панельным теплообменом:1-отбор воздуха из двигателя; 2-перекрывной кран; 3-ограничитель давления; 4,5,33-обратные клапаны; 6-заслонка к противооблединительной системе; 7-перекрывной кран; 8-дроссельная заслонка; 9-перекрывной кран эжектора; 10-перекрывной кран дублирующей системы; 11-перекрывной кран основной системы; 12-турбохолодильная установка дублирующей системы(ТХУ); 13-обратный клапан; 14-эжектор дублирующей системы(Э); 15-бак для воды; 16-воздухоподводящие отверстия; 17-соленоидный клапан; 18-усилитель; 19-увлажнитель; 20-фильтр(Ф); 21-регулятор давления в кабине (Рд)4 22,26-предохранительный клапан; 23-насадки; 24-термостат; 26-регулятор давления(Рд); 27-перепускной клапан; 28-синхронизатор расхода; 29-распределительный кран; 30-регулятор расхода(Рд); 31-глушитель шума; 32-задатчик расхода; 34-перекрывной и распределительный кран; 35-перепускной клапан; 36-турбохолодильник(ТХ); 37-воздухо-воздушный теплообменник(ВВТ); задатчик влажности; 39-датчик влажности; 40-термостат

Главный недостаток рассмотренной СКВ — утяжеление конструкции воздушного судна.

На самолетах с большими скоростями полетов и малыми габаритами, например, на истребителях, применяются преимущественно одноступенчатые трехкаскадные системы кондиционирования.

В данной системе третья ступень представлена в качестве испарительного теплообменника, в котором происходит охлаждение воздуха, прошедшего первые две ступени — воздухо-воздушный теплообменник (ВВТ) и турбохолодильник (ТХ).

Испарительные теплообменники работают по открытому циклу, при этом воздух охлаждается за счет скрытой теплоты испарения хладагентов.

В отличие от СКВ самолетов на вертолете Ми-26Т система кондиционирования использует горячий воздух, отбираемый за четвертой ступенью каскада высокого давления компрессоров двигателей. В случае выхода из строя одного из двигателей работоспособность системы обеспечивается другим. Кроме этого на вертолете предусмотрена вентиляция кабины экипажа наружным воздухом.

В наземных условиях при неработающих двигателях горячий воздух для СКВ подается от бортовой вспомогательной силовой установки ТА-8В или от наземной установки воздушного запуска. Конструктивно СКВ выполнена таким образом, что позволяет включать кондиционирование воздуха экипажа и обогрев грузовой кабины как одновременно, так и раздельно [4].

Система регулирования давления обеспечивает наддув и поддержание требуемого избыточного давления в кабинах экипажа и сопровождающих.

В состав СКВ входят подсистемы:

– кондиционирование воздуха в кабине экипажа;

– обогрев грузовой кабины;

Основные агрегаты СКВ размещены под полом кабины экипажа с левой стороны, между шпангоутами ЗН и 5Н. Управление системой кондиционирования воздуха осуществляется со специального щитка, расположенного на левом пульте бортинженера. Схема размещения системы кондиционирования вертолета Ми-26Т представлена на рисунке 4.


Рис. 4. Схема размещения системы кондиционирования воздуха: 1-заслонка; 2-блок согласования; 3-ручная заслонка; 4-приемник температуры; 5-внутрикабинный термометр; 6-электровентилятор; 7-обратный клапан; 8-блок агрегатов; 9-блок управления; 10-сигнализатор оборотов; 11-измерительный комплекс давления; 12-прибор вычисления расхода воздуха; 13-перекрывная заслонка; 14-сигнализатор давления; 15-двигатель; 16-регулятор избыточного давления; 17-сигнализатор температуры; 18-регулирующая заслонка; 19-блок управления автоматического регулятора температуры; 20-воздухо-воздушный радиатор; 21-датчик расхода воздуха; 22-эжектор; 23-заслонка с электромеханизмом

В данной статье был выполнен обзор существующих систем кондиционирования воздушных судов. А также рассмотрены основные виды СКВ самолетов и изучена СКВ вертолета Ми-26Т.

  1. Воронин Г. И. Системы кондиционирования воздуха на летательных аппаратах: учебник / Г. И. Воронин — М: Машиностроение, 1973. — 443с.
  2. Явнель Б. К. Курсовое и дипломное проектирование холодильных установок и систем кондиционирования воздуха: учебник / Б. К. Явнель — М: Агропромиздат, 1982. — 223с.
  3. Доссат Рой Дж. Основы холодильной техники: учебник / Рой Дж. Доссат — М: Легкая и пищевая промышленность, 1984. — 520с.
  4. Сорокин А. В. Конструкция вертолетов: учебное пособие / А. В. Сорокин — Ростов-на-Дону, 2010–123с.

Источники:
http://studbooks.net/2456491/tehnika/sistema_konditsionirovaniya_vozduha_samolyota
http://pikabu.ru/story/sistema_konditsionirovaniya_samoleta_ventilyatsiya_samoleta_3834232
http://travelask.ru/blog/posts/9432-otkuda-v-salone-samoleta-letyaschego-na-vysote-10-000-metrov
http://engineering-ru.livejournal.com/40636.html
http://revolution.allbest.ru/transport/00531918_0.html
http://moluch.ru/archive/127/35276/
http://www.aviafaq.ru/terms-trip/276-provoz-kosmetiki-v-ruchnoy-kladi.html

Ссылка на основную публикацию